Large-scale virtual screening on public cloud resources with Apache Spark
نویسندگان
چکیده
BACKGROUND Structure-based virtual screening is an in-silico method to screen a target receptor against a virtual molecular library. Applying docking-based screening to large molecular libraries can be computationally expensive, however it constitutes a trivially parallelizable task. Most of the available parallel implementations are based on message passing interface, relying on low failure rate hardware and fast network connection. Google's MapReduce revolutionized large-scale analysis, enabling the processing of massive datasets on commodity hardware and cloud resources, providing transparent scalability and fault tolerance at the software level. Open source implementations of MapReduce include Apache Hadoop and the more recent Apache Spark. RESULTS We developed a method to run existing docking-based screening software on distributed cloud resources, utilizing the MapReduce approach. We benchmarked our method, which is implemented in Apache Spark, docking a publicly available target receptor against [Formula: see text]2.2 M compounds. The performance experiments show a good parallel efficiency (87%) when running in a public cloud environment. CONCLUSION Our method enables parallel Structure-based virtual screening on public cloud resources or commodity computer clusters. The degree of scalability that we achieve allows for trying out our method on relatively small libraries first and then to scale to larger libraries. Our implementation is named Spark-VS and it is freely available as open source from GitHub (https://github.com/mcapuccini/spark-vs).Graphical abstract.
منابع مشابه
Efficient iterative virtual screening with Apache Spark and conformal prediction
BACKGROUND Docking and scoring large libraries of ligands against target proteins forms the basis of structure-based virtual screening. The problem is trivially parallelizable, and calculations are generally carried out on computer clusters or on large workstations in a brute force manner, by docking and scoring all available ligands. CONTRIBUTION In this study we propose a strategy that is b...
متن کاملLow Latency Geo-distributed Data Analytics – Public Review
Large cloud service providers ingest massive amounts of data in geographically distributed sites spread across the globe. Analytics for such planetary-scale datasets is an important emerging challenge. The current practice is to copy all data to a central location, where it can be dealt with locally by standard data analytics stacks such as Hadoop and Spark. However, transferring large volumes ...
متن کاملA Genetic Based Resource Management Algorithm Considering Energy Efficiency in Cloud Computing Systems
Cloud computing is a result of the continuing progress made in the areas of hardware, technologies related to the Internet, distributed computing and automated management. The Increasing demand has led to an increase in services resulting in the establishment of large-scale computing and data centers, in addition to high operating costs and huge amounts of electrical power consumption. Insuffic...
متن کاملFalco: a quick and flexible single-cell RNA-seq processing framework on the cloud
Summary Single-cell RNA-seq (scRNA-seq) is increasingly used in a range of biomedical studies. Nonetheless, current RNA-seq analysis tools are not specifically designed to efficiently process scRNA-seq data due to their limited scalability. Here we introduce Falco, a cloud-based framework to enable paralellization of existing RNA-seq processing pipelines using big data technologies of Apache Ha...
متن کاملBig Data in the Cloud: A Survey
Big Data has become a hot topic across several business areas requiring the storage and processing of huge volumes of data. Cloud computing leverages Big Data by providing high storage and processing capabilities and enables corporations to consume resources in a pay-as-you-go model making clouds the optimal environment for storing and processing huge quantities of data. By using virtualized re...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 9 شماره
صفحات -
تاریخ انتشار 2017